Prof. Dr. Katja Dörschner Boyaci

Katja Dörschner Boyaci, Ph.D.

Prof.

Justus-Liebig-Universität Gießen FB 06 Psychologie und Sportwissenschaft
Otto-Behaghel-Straße, 10F
35394 Gießen

06419926111 +49 (0)641 99 26 119 Gießen E-Mail senden Website besuchen

Kurzinfo

Die Forschung in meinem Labor zielt darauf ab, die Mechanismen aufzudecken, durch die das Gehirn in der Lage ist, eine reichhaltige Wahrnehmungserfahrung aus sensorischem Input zu konstruieren. Insbesondere konzentriert sich unsere Arbeit darauf, die komputationalen und neuronalen Mechanismen zu verstehen, die es dem Menschen ermöglichen, Materialqualitäten anhand von statischen und bewegten Bildern einzuschätzen. Ein weiterer Schwerpunkt liegt darauf, herauszufinden, wie Vorerfahrungen und Interaktionen mit Objekten und Materialien die Wahrnehmung beeinflussen. 

Projektrelevante Veröffentlichungen
Cavdan, M., Doerschner, K., Drewing, K. (2022). Haptic Discrimination of Different Types of Soft Materials. In: H. Seifi, et al. Haptics: Science, Technology, Applications. EuroHaptics 2022. Lecture Notes in Computer Science, vol 13235. Springer, Cham. find preprint
Cavdan, M., Goktepe, N., Drewing, K., & Doerschner, K. (2023). Assessing the representational structure of softness activated by words. Scientific Reports, 13(1), 8974. find paper
Dövencioǧlu, D. N., Üstün, F. S., Doerschner, K., & Drewing, K. (2022). Hand explorations are determined by the characteristics of the perceptual space of real-world materials from silk to sand. Scientific Reports, 12(1), 14785. find paper DOI
Kaiser, D., Stecher, R., & Doerschner, K. (2023). EEG decoding reveals neural predictions for naturalistic material behaviors. bioRxiv, 2023-02. find paper DOI
Kaiser, D., Stecher, R., & Doerschner, K. (2024). EEG decoding reveals neural predictions for naturalistic material behaviors. Journal of Neuroscience43, no. 29 (2023): 5406-5413. find paper DOI
Lin, L. P. Y., Cavdan, M., Doerschner, K., & Drewing, K. (2023, July). The Influence of Surface Roughness and Surface Size on Perceived Pleasantness. In 2023 IEEE World Haptics Conference (WHC) (pp. 417-424). IEEE. find paper
Malik, A., Doerschner, K., & Boyaci, H. (2023). Unmet expectations about material properties delay perceptual decisions. Vision Research, 208, 108223. find paper
Schmid AC, Barla P, & Doerschner, K (2023). Material category of visual objects computed from specular image structure. Nature Human Behaviour, 7(7), 1152-1169. find paper
Ältere projektrelevante Veröffentlichungen
Alley, L. M., Schmid, A. C., & Doerschner, K. (2020). Expectations affect the perception of material properties. Journal of Vision, 20(12), 1-1. find paper
Cavdan, M., Doerschner, K. & Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics. find paper
Cavdan, M., Drewing, K., & Doerschner, K. (2021). The look and feel of soft are similar across different softness dimensions. Journal of vision, 21(10), 20-20. find paper
Cavdan, M., Ennis, R., Drewing, K. & Doerschner, K. (2021). Constraining haptic exploration with sensors and gloves hardly changes the multidimensional structure of softness perception. In 2021 IEEE World Haptics Conference (WHC) (pp. 31-36), IEEE. find paper
Doerschner, K., Fleming, R. W., Yilmaz, O., Schrater, P. R., Hartung, B., & Kersten, D. (2011). Visual motion and the perception of surface material. Current Biology, 21(23), 2010-2016. find paper
Schmid, A. C., Boyaci, H., & Doerschner, K. (2021). Dynamic dot displays reveal material motion network in the human brain. NeuroImage, 117688. find paper
Schmid, A., Doerschner, K. (2018). The contribution of optical and mechanical properties to the perception of soft and hard breaking materials. Journal of Vision, 18(1), 14, 1-32. find paper
Schmid, A.C. & Doerschner, K. (2019). Representing stuff in the human brain. Current Opinion in Behavioral Sciences, 30, 178-185. find paper
Toscani, M., Yücel, E. I., & Doerschner, K. (2019). Gloss and speed judgments yield different fine tuning of saccadic sampling in dynamic scenes. i-Perception<, 10(6), 2041669519889070. find paper